مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی

نویسندگان

  • افشاری صفوی, علیرضا دانشگاه علوم پزشکی اصفهان
  • زند کریمی, اقبال دانشگاه علوم پزشکی کرمانشاه
چکیده مقاله:

 Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic retinopathy.  Methods: Of 16,000 diabetic cases from Kermanshah diabetic center a sample including 150 cases and 150 controls were enrolled. Demographic data, BMI, FBS, Hba1c, blood pressure, cholesterol (TC) and duration of disease, smoking status, and age of patient, and health records were collected into two separate checklists. For identifying risk factors, and artificial neural network models multiple logistic regression was fitted to the data and the Rock charts was used to compare the predictive power of the models. Also sensitivity and specificity were analyzed together with the standards of both models (ROC curve, sensitivity and specificity) and superior model was introduced.  Results: The predictive power of logistic regression and MLP were 73.0 and 83.0, respectively. The MLP model features (80%) and sensitivity (85%) were higher. Variables of FBS (p=0.029), BMI (p<0.0001), age (p<0.0001) duration of diabetes (p<0.0001) in the logistic regression model, the variables of age, FBS, duration of diabetes, BMI, smoking status, TC according to the Wrapper, the predictive power of 83% in MLP were significant. Conclusion: In this study, the MLP model showed more power to identify diabetic retinopathy patients from those without retinopathy. Thus, in communities that case and control groups have high affinity (like this study), discovering the difference needs a more powerful method such as artificial neural network MLP. This method is recommended for medical research. 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

به‌کارگیری رگرسیون لجستیک بیزی برای تعیین عوامل خطر رتینوپاتی دیابتی

Background: Diabetes is one of the most common chronic diseases of this century. Retinopathy and makulopati are two most important implications of diabetes. In this study, Bayesian logistic regression is used to assess the factors affected on diabetic- retinopathy. Methods: Study population of this cross-sectional study contains all diabetic patients in Tehran of which 623 of them were selec...

متن کامل

مقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص هم‏زمان بیماری فشارخون و دیابت

  Background : Diabetes and hypertension are from important non-communicable diseases in the world and their prevalence are very important for health authorities. The objective of this study was to compare the predictive precision of joint logistic regression (LR) and artificial neutral network (ANN) in concurrent diagnosis of diabetes and hypertension.   Methods : This cross-sectional study wa...

متن کامل

مقایسه ی شبکه ی عصبی مصنوعی با رگرسیون لجستیک در پیش بینی اختلالات روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف

هرچند آسیب مغزی شدید می­تواند افراد را مستعد ابتلا به اختلال روانی کند، در مورد آسیب تروماتیک مغزی خفیف هنوز جای بحث و بررسی وجود دارد. هدف این پژوهش مقایسه ی قدرت شبکه عصبی مصنوعی در پیش­بینی بروز اختلال روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف با رگرسیون لجستیک بود. برای این منظور در یک مطالعه کوهورت آینده نگر، 100 نفر بیمار ترومایی ارجاع شده به مرکز ترومای بیمارستان شهید بهشتی کاشان...

متن کامل

مقایسه کارآیی شبکه عصبی مصنوعی و رگرسیون چندگانه در پیش بینی وزن دنبه گوسفند

در این مطالعه ارتباط بین وزن­های تولد، از شیرگیری و پایان پروار با وزن دنبه 69 رأس گوسفند بلوچی توسط روش­های شبکه عصبی مصنوعی و رگرسیون چندگانه بررسی شد. هر دو روش با دقت بالایی وزن دنبه را پیش­بینی کردند. هر چند که میانگین خطا به صورت معنی­داری در روش شبکه عصبی مصنوعی کمتر از رگرسیون چندگانه بود. ضریب تعیین برآورد شده در روش شبکه عصبی مصنوعی (93/0) بالاتر از رگرسیون چندگانه (81/0) به دست آمد. ...

متن کامل

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 21  شماره 124

صفحات  79- 90

تاریخ انتشار 2014-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023